

The first version of this guide has been compiled by the members of the Aital "Durability" working group.

Giampaolo Barbarossa (Aital)

Riccardo Boi (Qualital)

Giuseppe Casati (Esperto)

Irene Marcolungo (Esperta)

Luca Cappellaro (Aluk Group)

Franco Falcone (Cie)

Cristian Pandolfi (Gi Color)

Ludovido Palladini (Henkel)

Achille Caliendo (Pulverit)

Giancarlo Fenzi (Viv)

This guide is aimed at the applications in which semifinished aluminium alloys, extrusions (alloy EN AW 6060) and laminates (principally alloys of the 5000 AIMg series and, to a lesser extent, of the 3000 AIMn series), are employed for the realization of doors, windows and curtain walls, which will be referred to from here on in simply as "frames". To this end the durability evaluations of the finishes are correlated to the protective characteristics of resistance to corrosion and to aesthetic ones (decay in colour and in brightness).

The **durability** evaluations of the finishes are correlated to the:

- **protective characteristics** of resistance to corrosion and to
- **aesthetic** ones (decay in colour and in brightness)

Coating surfaces

Il Laboratorio

Prove di laboratorio: prodotti in lega di alluminio verniciati

Prove accreditate

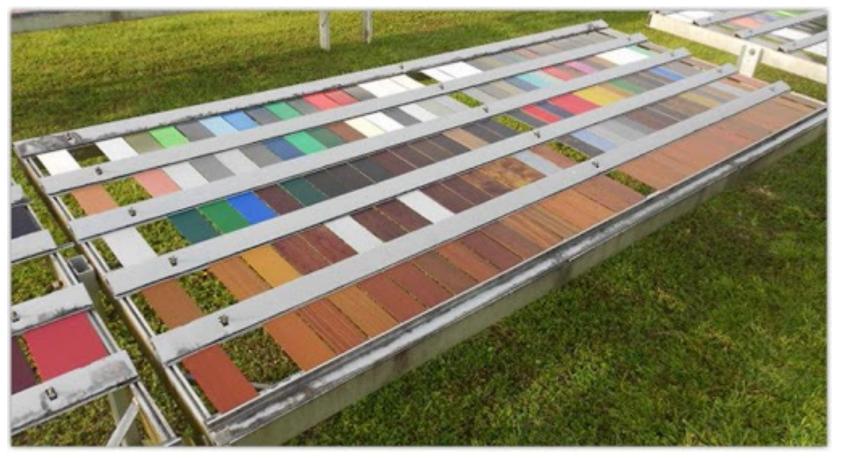
Descrizione	Norma di riferimento
Brillantezza	UNI EN ISO 2813
Durezza alla matita	ISO 15184;
	UNI EN 13523-4;
	ASTM D3363
Resistenza all'abrasione dei rivestimenti	UNI 10559;
organici (Taber test)	ISO 7784-2;
	ASTM D4060
Differenze di colore	UNI EN ISO 11664-4
Misurazione dello spessore (correnti indotte)	UNI EN ISO 2360
Prova di invecchiamento artificiale ed esposizione alle radiazioni di lampade allo xeno	UNI EN ISO 16474-2
Resistenza alla corrosione filiforme	UNI EN 3665;
	UNI EN ISO 4623-2
Resistenza alla corrosione in camera a	UNI EN ISO 9227 +
nebbia salina	UNI EN ISO 4628-2
Resistenza all'alcalinità della malta	UNI EN 12206-1 par. 5.9
Resistenza all'umidità – condensa continua CH	UNI EN ISO 6270-2
Resistenza alle atmosfere umide contenenti anidride solforosa	UNI EN ISO 3231
Prova di resistenza alla corrosione per immersione (Machu test)	Specifiche QUALICOAT
Prova di aderenza (quadrettatura)	UNI EN ISO 2409

ITALIAN-RUSSIAN ALUMINIUM FORUM 2021

Coating surfaces

Valutazione della permeabilità del film di vernice e della qualità del pretrattamento (Pressure cooker test)	UNI EN 12206-1 Par.5.10
Prova di piegamento con mandrino cilindrico	UNI EN ISO 1519
Prova di imbutitura	UNI EN ISO 1520
Durezza Buchholz	UNI EN ISO 2815
Resistenza all'urto	UNI EN ISO 6272-1; UNI EN ISO 6272-2

Altre prove (non accreditate)


Descrizione	Norma di riferimento
Contatto con sostanze aggressive	AAMA2605;
	UNI EN ISO 175
Water Spot (Immersione in acqua a 60°C x 24 ore)	Metodo QUALICOAT
Prova in acqua all'ebollizione	Metodo QUALICOAT
Prova di aderenza a umido	Metodo QUALICOAT;
	AAMA 2603 / 2604 / 2605
Resistenza all'umidità – condensa continua (Single sided)	UNI EN ISO 6270-1
Invecchiamento accelerato QUV	UNI EN ISO 16474-3;
	UNI EN ISO 4892-3

Ultima revisione 24/02/2020

Coating surfaces

Natural weathering test Exposure in Florida according to ISO 2810

Anodizing surfaces

Il Laboratorio

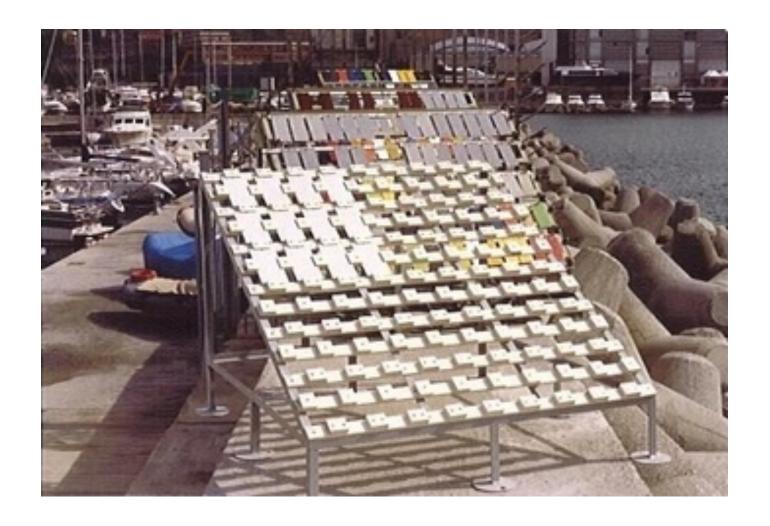
Prove di laboratorio: elenco prove sui prodotti in lega di alluminio anodizzati

Prove accreditate

Descrizione	Norma di riferimento
Microdurezza Vickers di strati di ossido anodico	UNI EN ISO 4516
Resistenza all'abrasione di strati di ossido anodico (Taber test)	UNI 7796 - App.B
Misura dello spessore (correnti indotte)	UNI EN ISO 2360
Misurazione degli spessori dei rivestimenti con metodo microscopico	UNI EN ISO 1463
Resistenza alla corrosione in camera a nebbia salina neutra (NSS), acetica (AASS) e cupro-salina acetica (CASS)	UNI EN ISO 9227
Valutazione della perdita di potere assorbente di strati anodici fissati	UNI 9834; UNI EN ISO 2143
Valutazione della qualità del fissaggio mediante misura della perdita di massa (con trattamento acido preliminare)	UNI EN ISO 3210 metodo 2
Valutazione della qualità del fissaggio mediante misura della perdita di massa (senza trattamento acido preliminare)	UNI EN ISO 3210 metodo 1

Altre prove (non accreditate)

Descrizione	Norma di riferimento
Prova di ammettenza	UNI EN ISO 2931
Resistenza all'abrasione CLARK	BS 6161 – parte 18
Resistenza alla luce di strati di ossido anodico colorati	UNI ISO 2135


Ultima revisione 24/02/2020

LIAN-RUSSIAN ALUMINIUM FORUM 2021

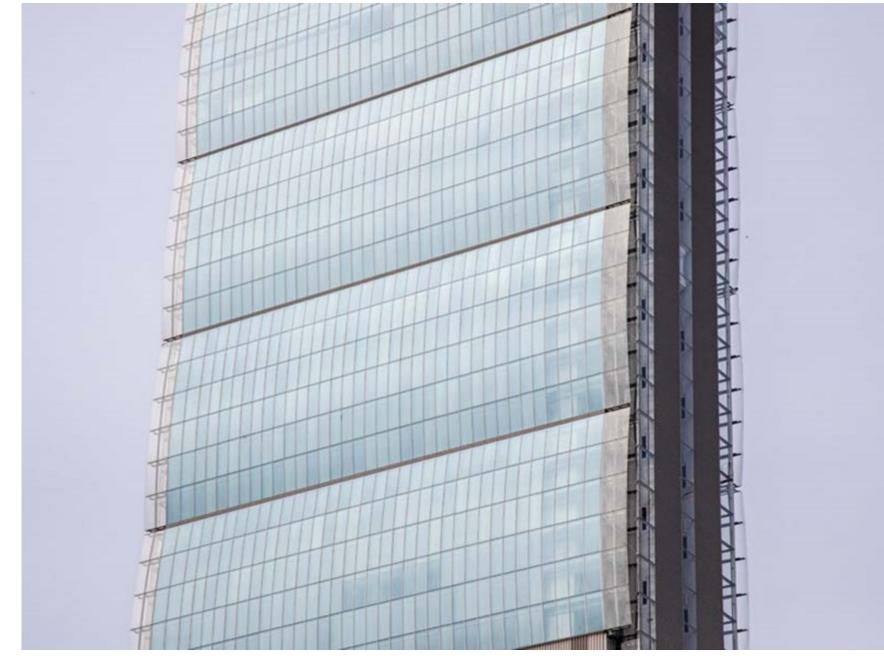
Anodizing surfaces

Natural weathering test Exposure in Italy and Holland

The **durability** of a manufactured article or of a structure treated on the surface depends on several parameters, such as:

- environment;
- exposure conditions of the finished manufactured article in use;
- structure design;
- type of alloy;
- support conditions before treatment;
- chosen finishing cycle;
- cleaning and maintenance in use.

How to use the guide


The guide is easy to use; it is in fact sufficient to utilize Tab. 2 (for coating) and 3 (for anodizing) reported in attachment 1, which fix, for each class of exposure (from C1 to C5 as defined in attachment 1) the optimal process able to guarantee the best characteristics of corrosion resistance and of the variations in colour and in brightness. To better understand the contents and how to use this guide it is however necessary that its user clearly understands the following concepts.

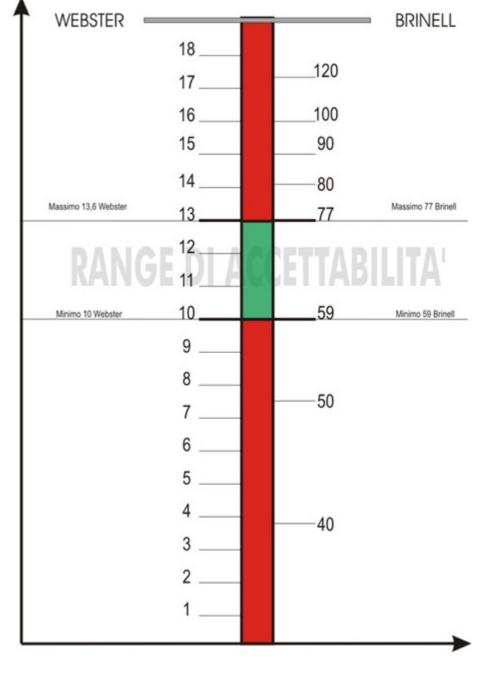
On the basis of the experience of the applications of aluminium in architecture, consolidated by over 50 years for anodizing and by about 30 years for coating, and it is understood what is recommended hereafter, one can reasonably say that the treatments and the products estimated in tables 2 and 3 can offer a minimum useful life, in terms of durability, of 15 years to corrosion resistance and to colour and brightness variations. The colour and brightness variations are closely related, not only to the exposure environment, but also to the class of coating products used.

In practice it is important and necessary that specific procedures, adequate to the project in question are edited, based on the following aspects

Identification of the **exposure class** (see table 1) of the zone in which the aluminium has to be placed

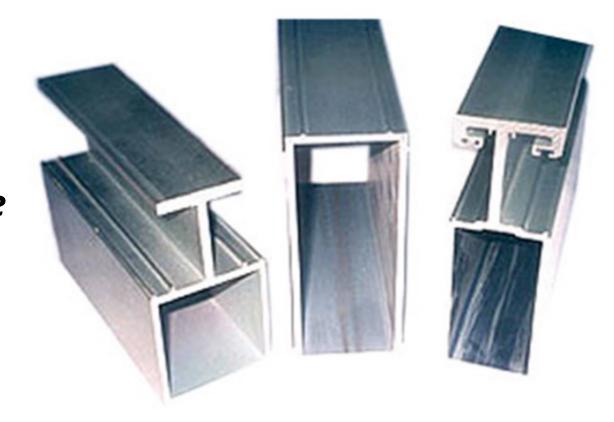
Exposure	Examples of Environments							
Class	Internal Environment	External Environment						
C1	BUILDINGS HEATED WITH CLEAN ATMOSPHERE, FOR EXAMPLE OFFICES, SHOPS SHOOLS, HOTELS	NOT APPLICABLE						
C2	NOT-HEATED BUILDINGS WHERE CONDEN- SATION CAN FORM, FOR EXAMPLE WA- REHOUSE, SPORT CENTERS ENVIRONMENTS WITH A LOW POLLUT LEVEL, ABOVE ALL RURAL AREAS (see to definition in the appendix)							
C3	AREAS OF PRODUCTION WITH HIGH HUMI- DITY AND A CERTAIN ATMOSPHERIC POL- LUTION; FOR EXAMPLE FOOD INDUSTRIES, LAUNDRIES, BREWERIES, DAIRIES	MODEST POLLUTION FROM SOLPHUR						
C4	CHEMICAL PLANTS, SWIMMING POOLS, COASTAL BOATYARDA	INDUSTRIAL AND COASTAL AREAS WITH MODERATE SALINITY						
C5-I	BUILDING OR AREAS WITH AN ALMOST PERMANENT CONDENSATION AND WITH HIGH POLLUTION	INDUSTRIAL AREAS WITH HIGH HUMIDITY AND AGGRESSIVE ATMOSPHERE						
C5-M	BUILDING OR AREAS WITH AN ALMOST PERMANENT CONDENSATION AND WITH HIGH POLLUTION	COASTAL AND OFFSHORE AREAS WITH HIGH SALINITY						

Note: To determine the "C" classes of atmospheric exposure, the regulation ISO 12944 advises an exposure of one year on a sheet of steel with low carbon content and of a galvanized sheet and then calculates the loss in weight (in g/m2) and the decrease in the thickness (in μ m) of zinc and steel. For each class "C" (from C1 to C5) precise limits of weight loss reported in an appropriate table are set.


Chemical composition of aluminium alloy

The alloy EN AW 6060 used for building constitutes the best compromise in terms of needs on the part of producers of profiles, who take advantage of its excellent extrudability, and by the users for its good mechanical characteristics and resistance to polluting agents. It must, however, be emphasized that the behaviour of such an alloy in terms of resistance to corrosion can change according to its chemical composition when the eligible impurities (in particular copper, zinc and iron) reach and exceed determined percentage values in weight, even though they are within the limits allowed in the alloy.

Elementi	Min	Max	EN 573/3
Si (Silicio)	0,40	0,47	0,3÷0,6
Fe (Ferro) (*)	0,15	0,23	0,10÷0,30
Cu (Rame)	-	0,03	max 0,10
Mn (Manganese)	-	0,04	max 0,10
Mg (Magnesio)	0,40	0,47	0,35÷0,60
Cr (Cromo)	-	0,02	max 0,05
Zn (Zinco)	-	0,03	max 0,15
Ti (Titanio)	-	0,03	max 0,15
Altre impurità	Ciascuna Totale M	· -	Ciascuna Max 0,05 Totale Max 0,15



Temper alloy EN AW 6060

Conditions of the support before treatment

Surface treatment

Cleaning and maintenance

Certifications and product approvals

Recommendations for coating

Certifications and product approvals

Recommendations for decoration

Certifications and product approvals

- Identification of the exposure class;
- The windows and doors must be free of "corrosion traps" and their geometry must allow adequate accessibility for cleaning and maintenance;
- Protect painted and anodized surfaces during storage, assembly and installation of windows;
- Preparation and execution of a suitable cleaning program (see technical data sheet AITAL n. 34/2003) and maintenance extended to the entire service life of the windows.

Identification of the exposure class;

- The windows and doors must be free of "corrosion traps" and their geometry must allow adequate accessibility for cleaning and maintenance;
- Protect painted and anodized surfaces during storage, assembly and installation of windows;
- Preparation and execution of a suitable cleaning program (see technical data sheet AITAL n. 34/2003) and maintenance extended to the entire service life of the windows.

Classe di	Esempi di ambienti							
esposizione	Ambiente interno	Ambiente esterno						
C ₁	EDIFICI RISCALDATI CON ATMOSFERA PULITA, PER ESEMPIO UFFICI, NEGOZI, SCUOLE, ALBERGHI	NON APPLICABILE						
C ₂	EDIFICI NON RISCALDATI DOVE PUÒ FORMARSI CONDENSA, PER ESEMPIO DEPOSITI, LOCALI SPORTIVI	AMBIENTI CON BASSO LIVELLO DI INQUINAMENTO, SOPRATTUTTO AREE RURALI						
C ₃	INQUINAMENTO ATMOSFERICO;	AMBIENTI URBANI E INDUSTRIALI, MODESTO INQUINAMENTO DA ANIDRIDE SOLFOROSA, ZONE						
C ₄		AREE INDUSTRIALI E ZONE COSTIERE CON MODERATA SALINITÀ						
C _{5-I}	EDIFICI O AREE CON CONDENSA QUASI PERMANENTE E CON ALTO INQUINAMENTO	A AREE INDUSTRIALI CON ALT. D UMIDITÀ E ATMOSFER. AGGRESSIVA						
C _{5-M}	EDIFICI O AREE CON CONDENSA QUASI PERMANENTE E CON ALTO INQUINAMENTO	ZONE COSTIERE E DEESHORE CONT						

- Identification of the exposure class;
- The windows and doors must be free of "corrosion traps" and their geometry must allow adequate accessibility for cleaning and maintenance;
- Protect painted and anodized surfaces during storage, assembly and installation of windows;
- Preparation and execution of a suitable cleaning program (see technical data sheet AITAL n. 34/2003) and maintenance extended to the entire service life of the windows.

- Identification of the exposure class;
- The windows and doors must be free of "corrosion traps" and their geometry must allow adequate accessibility for cleaning and maintenance;
- Protect painted and anodized surfaces during storage, assembly and installation of windows;
- Preparation and execution of a suitable cleaning program (see technical data sheet AITAL n. 34/2003) and maintenance extended to the entire service life of the windows.

ALIAN-RUSSIAN ALUMINIUM FORUM 2021

- Identification of the exposure class;
- The windows and doors must be free of "corrosion traps" and their geometry must allow adequate accessibility for cleaning and maintenance;
- Protect painted and anodized surfaces during storage, assembly and installation of windows;
- Preparation and execution of a suitable cleaning program (see technical data sheet AITAL n. 34/2003) and maintenance extended to the entire service life of the windows.

Associazione Italiana Trattamenti superficiali Alluminio

28062 Cameri [Novere] - Vie Private Regni 13/15 - tel. 0321 644195, fex 0321 517937 - C. F. 94022510033 website: www.sitel.co. 0.4460; intodisinal.co.

SCHEDA TECNICA N. 34/04 rev.02

ALLUMINIO ANODIZZATO E ALLUMINIO VERNICIATO PER APPLICAZIONI IN ESTERNO: **PULIZIA DELLE SUPERFICI**

Il presente documento è stato elaborato dal gruppo di lavoro AITAL "Prodotti Vernicianti" con la collaborazione del QUALITAL e sostituisce la scheda VECTAL "Manutenzione delle superfici in alluminio Verniciato" e CIOA "Condizioni di vendita Collaudi dell'alluminio anodizzato" in merito alla pulizia delle superfici

Cameri (NO), Ii 25 settembre 2015

How to use the guide

Use the Tables:

2 (for coating)

3 (for anodizing)

for each exposure class (C1 to C5) tables provide the best process

Pretratta		C ₁	(C ₂	C	· ·3	(4	C,	-1	C 5-	М
mento (asportazi one superficial e)	Conversion e chimica	SOLO INTERNO	CON R.S.A MEDIA	CON R.S.A ALTA	CON R.S.A MEDIA	CON R.S.A. ALTA	CON R.S.A MEDIA	CON R.S.A. ALTA	CON R.S.A MEDIA	CON R.S.A ALTA	CON R.S.A MEDIA	CON R.S.A ALTA
QUALICOAT Pretrattamen to STANDARD	Cromo esavalente o Esente-cromo esavalente	P.V. CL. 1	P.V. CL. 1	P.V. CL. 2,3								
QUALICOAT Pretrattamen to SEASIDE	Cromo esavalente o Esente-cromo esavalente				P.V. CL. 1	P.V. CL. 2,3						
QUALICOAT Pretrattamen to SEASIDE	Cromo esavalente o Esente-cromo esavalente o Strato d'ossido non fissato						P.V. CL. 1	P.V. CL. 2,3				
QUALICOAT Pretrattamen to SEASIDE	Cromo esavalente o Esente-cromo esavalente o Strato d'ossido non fissato								PRIM ER + P.V. CL. 1	PRIM ER + P.V. CL. 2,		
QUALICOAT Pretrattamen to SEASIDE	Valutare caso per caso										PRIM ER + P.V. CL. 1	PRI ME R + P.V. CL. 2 O

ITALIAN-RUSSIAN ALUMINIUM FORUM 2021

How to use the guide

Use the Tables:

2 (for painting)

3 (for anodizing)

for each exposure class (C1 to C5) tables provide the best process

l	Tabella 3 – Classi d	i spessore dell	'ossido anodic	o per ogni o	classe di espo	osizione " C "
ı						

Processo	Classe	C ₁	C ₂	C ₃	C ₄	C ₅ -1	C ₅ - M
	d'ossido	SOLO INTERNO	INTERNO E ESTERNO	INTERNO E ESTERNO	INTERNO E ESTERNO	INTERNO E ESTERNO	INTERNO E ESTERNO
QUALANOD Secondo specifiche del marchio	10	x					
QUALANOD Secondo specifiche del marchio	15		x				
QUALANOD Secondo specifiche del marchio	20			x			
QUALANOD Secondo specifiche del marchio	20				x		
QUALANOD Secondo specifiche del marchio	20 O 25 (cfr. nota)					x	
QUALANOD Secondo specifiche del marchio	20 O 25 (cfr. nota)						х

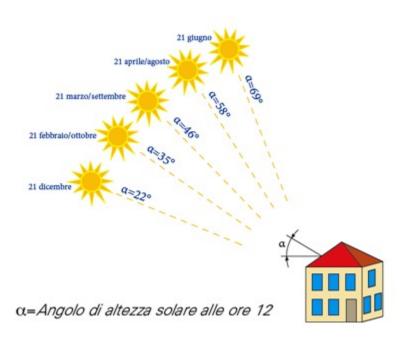
Precauzioni narticolari ner la classe 25

Pretrattamento (asportazione superficiale)	Conversione chimica	SOLO INTER '2	CON R.S.A MEDI A	CON R.S.A ALTA
QUALICOAT Pretrattamento STANDARD	Cromo esavalente o Esente-cromo esavalente	P.V. CL. 1	P.V. CL. 1	P.V. CL. 2, 3

C ₁	EDIFICI RISCALDATI CON ATMOSFERA PULITA, PER ESEMPIO UFFICI, NEGOZI, SCUOLE, ALBERGHI	NON APPLICABILE
C ₂	EDIFICI NON RISCALDATI DOVE PUÒ FORMARSI CONDENSA, PER ESEMPIO DEPOSITI, LOCALI SPORTIVI	INOUINAMENTO. SOPRATTUTTO

Pretrattamento	Conversione	C ₄		
(asportazione superficiale)	chimica	CON R.S.A MEDIA	CON R.S.A. ALTA	
QUALICOAT Pretrattamento SEASIDE	Cromo esavalente o Esente-cromo esavalente o Strato d'ossido non fissato	P.V. CL. 1	P.V. CL. 2, 3	

CANTIERI COSTIERI PER COSTIERE CON MODERATA SALINITÀ


Pretrattamento (asportazione	Conversione chimica	C ₅ -1		C ₅ - M	
superficiale)		CON R.S.A MEDIA	CON R.S.A ALTA	CON R.S.A MEDIA	CON R.S.A ALTA
QUALICOAT Pretrattamento SEASIDE	Cromo esavalente o Esente-cromo esavalente o Strato d'ossido non fissato	PRIMER + P.V. CL. 1	PRIMER + P.V. CL. 2, 3		
QUALICOAT Pretrattamento SEASIDE	Valutare caso per caso			PRIMER + P.V. CL. 1	PRIMER + P.V. CL. 2

R.S.A.= Annual solar radiation

On the basis of surveys carried out by ENEA in the five years between 1995-1999, in Italy, in a year, the quantity of solar radiation that reaches a surface of one square metre is around, on average, 5000 MJ. The solar energy occurs as a collection of electromagnetic radiation of different wavelengths: about 10% in the form of ultraviolet radiation with a wavelength of between 0.2 and 0.4 micrometres (1) micrometre is equal to 1 thousandth of a millimetre), about 50% is in the form of visible radiation, with a wavelength between 0.4 and 0.8 micrometres and around 40% is in the form of infrared radiation, between 0.8 and 3 micrometres.



R.S.A.= Annual solar radiation

How to calculate the value of R.S.A.:

- 1. On the Google Maps website or on Wikipedia it is possible to find the coordinates (latitude and longitude) of the site in which the frames will be placed;
- 2. On the website http://www.solaritaly.enea.it/CalcRggmmOrizz/Calcola3.php of ENEA renewable resources on "Italian atlas of solar radiation" there is the possibility to obtain the "Monthly average of daily global solar radiation on a horizontal surface" (five year average 1995-1999),
 - By inserting the latitude and longitude of the place in which windows and curtain walls will be installed,
 - By selecting the ENEA-SOLTERM box,
 - By choosing MJ/m2 as the measurement unit and requesting the value of R.S.A. for all months.
- 3. Double click on calculate and at the bottom of the third page it will be possible to find the "global annual radiation on a horizontal surface" value (a typical 365-day year).

In the exposure conditions with R.S.A. values = Average Annual Solar Radiation greater than 5.400 MJ/m₂ class 2 or 3 powders have to be used.

Purely as an example, the R.S.A. values of some Italian cities are reported in the table

Città	I.S.A. in MJ/m ²	Latitudine N	Longitudine E
Bolzano	4.829	46°30'0''	11°21'0''
Milano	5.065	45°27'50''	9°21'25''
Bologna	5.413	45°29'7''	11°21'0''
Firenze	5.147	43°46'17''	11°15'15''
Roma	5.460	41°53'35''	12°28'58''
Napoli	5.535	40°50'0''	14°15'0''
Taranto	5.549	40°28'0''	17°14'0''
Porto Torres	5.627	40°50'13''	8°24'5''
Palermo	5.812	38°06'56''	13°21'41''
Ragusa	5.901	36°55'30''	14°43'50''

For information only: in Florida the annual values of R.S.A in the four-year period 2007-2011 have varied between 6200 and 6400 MJ / m².

Associazione Italiana Trattamenti superficiali Alluminio

www.aital.net info@aital.net

Dipartimento di QUALITAL SERVIZI SrL

www.qualital.net info@qualitalservizi.net

Thanks for your attention